A human motion model based on maps for navigation systems

نویسندگان

  • Susanna Kaiser
  • Mohammed Khider
  • Patrick Robertson
چکیده

Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floorplans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs), long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians’ motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floorplans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest). We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment

Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...

متن کامل

designing and implementing a 3D indoor navigation web application

​During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

A novel fuzzy multi-criteria decision-making methodology based upon the spherical fuzzy sets with a real case study

The choice of roll stabilization system is critical for many types of ships. For warships where operational activities are fast and the concept of time is very effective, determining the most appropriate of these systems is of particular importance. Some operations, such as the landing of the helicopter on board, are critical for naval ships. Unwanted rolling motion makes this difficult. In add...

متن کامل

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011